Search test library by skills or roles
⌘ K

Natural Language Processing (NLP) Test

The NLP (Natural Language Processing) Online test uses scenario-based MCQs to evaluate candidates on their knowledge of NLP concepts and techniques, such as text classification, information extraction, sentiment analysis, and named entity recognition. The test assesses a candidate's ability to apply NLP techniques to real-world problems and scenarios and design effective NLP models.

Get started for free
Preview questions

Screen candidates with a 25 mins test

Test duration:  25 mins
Difficulty level:  Moderate
Availability:  Ready to use
Questions:
  • 12 Natural Language Processing MCQs
Covered skills:
Tokenization
Text Classification
Sentiment Analysis
Named Entity Recognition
Word Embeddings
Language Modeling
Machine Translation
Information Extraction
Text Summarization
Topic Modeling
Get started for free
Preview questions

Use Adaface tests trusted by recruitment teams globally

Adaface is used by 1500+ businesses in 80 countries.

Adaface skill assessments measure on-the-job skills of candidates, providing employers with an accurate tool for screening potential hires.

Amazon Morgan Stanley Vodafone United Nations HCL PayPal Bosch WeWork Optimum Solutions Deloitte NCS Sokrati J&T Express Capegemini

Use the Natural Language Processing (NLP) Assessment Test to shortlist qualified candidates

The Natural Language Processing (NLP) Test helps recruiters and hiring managers identify qualified candidates from a pool of resumes, and helps in taking objective hiring decisions. It reduces the administrative overhead of interviewing too many candidates and saves time by filtering out unqualified candidates at the first step of the hiring process.

The test screens for the following skills that hiring managers look for in candidates:

  • Ability to tokenize text effectively
  • Skill in classifying text into different categories
  • Capability to analyze sentiment in text
  • Proficiency in recognizing named entities in text
  • Expertise in utilizing word embeddings
  • Proficiency in building language models
  • Skill in translating text from one language to another
  • Ability to extract information from text
  • Expertise in generating text summaries
  • Skill in performing topic modeling
Get started for free
Preview questions

Screen candidates with the highest quality questions

We have a very high focus on the quality of questions that test for on-the-job skills. Every question is non-googleable and we have a very high bar for the level of subject matter experts we onboard to create these questions. We have crawlers to check if any of the questions are leaked online. If/ when a question gets leaked, we get an alert. We change the question for you & let you know.

How we design questions

These are just a small sample from our library of 15,000+ questions. The actual questions on this Natural Language Processing (NLP) Online Test will be non-googleable.

🧐 Question

Medium

Hate Speech Detection Challenge
Text Classification
Data Imbalance
Solve
You are working on a project to detect hate speech in social media posts. Your initial model, a basic binary classification model, has achieved high accuracy during training, but it's not performing well on the validation set. You also notice that your dataset has significantly more non-hate-speech examples than hate-speech examples. Given this situation, which of the following strategies could likely improve the performance of your model?
A: Collect more data and retrain the model.
B: Introduce data augmentation techniques specifically for hate-speech examples.
C: Change the model architecture from binary classification to multi-class classification.
D: Replace all the words in the posts with their synonyms to increase the diversity of the data.
E: Remove the non-hate-speech examples from the dataset to focus on the hate-speech examples.

Easy

Identifying Fake Reviews
Text Classification
Solve
You are a data scientist at an online marketplace company. Your task is to develop a solution to identify fake reviews on your platform. You have a dataset where each review is marked as either 'genuine' or 'fake'. After developing an initial model, you find that it's accurately classifying 'genuine' reviews but performing poorly with 'fake' ones. Which of the following steps can likely improve your model's performance in this context?
A: Use a more complex model to capture the intricacies of 'fake' reviews.
B: Obtain more data to improve the overall performance of the model.
C: Implement a cost-sensitive learning approach, placing a higher penalty on misclassifying 'fake' reviews.
D: Translate the reviews to another language and then back to the original language to enhance their clarity.
E: Remove the 'genuine' reviews from your training set to focus on 'fake' reviews.

Medium

Sentence probability
N-Grams
Language Models
Solve
Consider the following pseudo code for calculating the probability of a sentence using a bigram language model:
 image
Assume that the bigram and unigram counts are as follows:

bigram_counts = {("i", "like"): 2, ("like", "cats"): 1, ("cats", "too"): 1}
unigram_counts = {"i": 2, "like": 2, "cats": 2, "too": 1}
vocabulary_size = 4

What is the probability of the sentence "I like cats too" using the bigram language model?

Easy

Tokenization and Stemming
Stemming
Solve
You are working on a natural language processing project and need to preprocess the text data for further analysis. Your task is to tokenize the text and apply stemming to the tokens. Assuming you have an English text corpus, which of the following combinations of tokenizer and stemmer would most likely result in the best balance between token granularity and generalization?

Medium

Word Sense Disambiguation
Solve
You have been provided with a pre-trained BERT model (pretrained_bert_model) and you need to perform Word Sense Disambiguation (WSD) on the word "bat" in the following sentence:

"The bat flew around the room."

You have also been provided with a function called cosine_similarity(vec1, vec2) that calculates the cosine similarity between two vectors.
Which of the following steps should you perform to disambiguate the word "bat" in the given sentence using the BERT model and cosine similarity?

1. Tokenize the sentence and pass it through the pre-trained BERT model.
2. Extract the embeddings of the word "bat" from the sentence.
3. Calculate the cosine similarity between the "bat" embeddings and each sense's representative words.
4. Choose the sense with the highest cosine similarity.
5. Calculate the Euclidean distance between the "bat" embeddings and each sense's representative words.
6. Choose the sense with the lowest Euclidean distance.
🧐 Question🔧 Skill

Medium

Hate Speech Detection Challenge
Text Classification
Data Imbalance

2 mins

Natural Language Processing
Solve

Easy

Identifying Fake Reviews
Text Classification

2 mins

Natural Language Processing
Solve

Medium

Sentence probability
N-Grams
Language Models

2 mins

Natural Language Processing
Solve

Easy

Tokenization and Stemming
Stemming

2 mins

Natural Language Processing
Solve

Medium

Word Sense Disambiguation

2 mins

Natural Language Processing
Solve
🧐 Question🔧 Skill💪 Difficulty⌛ Time
Hate Speech Detection Challenge
Text Classification
Data Imbalance
Natural Language Processing
Medium2 mins
Solve
Identifying Fake Reviews
Text Classification
Natural Language Processing
Easy2 mins
Solve
Sentence probability
N-Grams
Language Models
Natural Language Processing
Medium2 mins
Solve
Tokenization and Stemming
Stemming
Natural Language Processing
Easy2 mins
Solve
Word Sense Disambiguation
Natural Language Processing
Medium2 mins
Solve

Test candidates on core Natural Language Processing (NLP) Hiring Test topics

Tokenization: Tokenization is the process of splitting a text or sentence into individual tokens or words. It is an essential step in NLP tasks as it provides a structured representation of textual data, making it easier for further processing and analysis.

Text Classification: Text classification involves assigning pre-defined categories or labels to textual data based on its content. This skill is important in NLP to automatically categorize large volumes of text, enabling efficient information retrieval and organization.

Sentiment Analysis: Sentiment analysis aims to determine the emotional tone or sentiment expressed in a piece of text, whether it is positive, negative, or neutral. This skill is valuable for understanding consumer opinions, social media sentiment, and customer feedback.

Named Entity Recognition: Named Entity Recognition involves identifying and classifying named entities, such as names, dates, locations, and organizations, within a text. This skill helps extract valuable information and relations from unstructured text, aiding in tasks like information extraction and knowledge graph generation.

Word Embeddings: Word embeddings are vector representations of words that capture semantic and syntactic relationships. This skill enables the encoding of text into numerical vectors, facilitating machine learning algorithms to understand the meaning and context of words.

Language Modeling: Language modeling involves predicting the next word in a sequence based on the previous words. It is essential in applications like speech recognition, machine translation, and autocomplete, as it helps generate coherent and contextually appropriate text.

Machine Translation: Machine translation refers to the automatic translation of text or speech from one language to another. This skill is crucial for breaking down language barriers, enabling communication and information exchange across different cultures and regions.

Information Extraction: Information extraction involves automatically extracting structured information from unstructured text. This skill aids in tasks like extracting personal details from resumes, extracting facts from news articles, and organizing information for knowledge graph construction.

Text Summarization: Text summarization is the process of condensing a large amount of text into a shorter and concise summary while preserving the essential information. This skill is useful for generating executive summaries, providing a quick overview of lengthy documents or articles.

Topic Modeling: Topic modeling is a statistical method that identifies latent topics within a collection of documents. This skill helps discover hidden patterns and themes in text data, enabling tasks like content recommendation, document clustering, and trend analysis.

Get started for free
Preview questions

Make informed decisions with actionable reports and benchmarks

View sample scorecard

Screen candidates in 3 easy steps

Pick a test from over 500+ tests

The Adaface test library features 500+ tests to enable you to test candidates on all popular skills- everything from programming languages, software frameworks, devops, logical reasoning, abstract reasoning, critical thinking, fluid intelligence, content marketing, talent acquisition, customer service, accounting, product management, sales and more.

Invite your candidates with 2-clicks

Make informed hiring decisions

Get started for free
Preview questions

Try the most advanced candidate assessment platform

ChatGPT Protection

Non-googleable Questions

Web Proctoring

IP Proctoring

Webcam Proctoring

MCQ Questions

Coding Questions

Typing Questions

Personality Questions

Custom Questions

Ready-to-use Tests

Custom Tests

Custom Branding

Bulk Invites

Public Links

ATS Integrations

Multiple Question Sets

Custom API integrations

Role-based Access

Priority Support

GDPR Compliance


Pick a plan based on your hiring needs

The most advanced candidate screening platform.
14-day free trial. No credit card required.

From
$15
per month (paid annually)
love bonito

With Adaface, we were able to optimise our initial screening process by upwards of 75%, freeing up precious time for both hiring managers and our talent acquisition team alike!

Brandon Lee, Head of People, Love, Bonito

Brandon
love bonito

It's very easy to share assessments with candidates and for candidates to use. We get good feedback from candidates about completing the tests. Adaface are very responsive and friendly to deal with.

Kirsty Wood, Human Resources, WillyWeather

Brandon
love bonito

We were able to close 106 positions in a record time of 45 days! Adaface enables us to conduct aptitude and psychometric assessments seamlessly. My hiring managers have never been happier with the quality of candidates shortlisted.

Amit Kataria, CHRO, Hanu

Brandon
love bonito

We evaluated several of their competitors and found Adaface to be the most compelling. Great library of questions that are designed to test for fit rather than memorization of algorithms.

Swayam Narain, CTO, Affable

Brandon

Have questions about the Natural Language Processing (NLP) Hiring Test?

How does pricing work?

You can check out our pricing plans.

Can I customize the test?

Yes, absolutely. Custom assessments are set up within 48 hours based on your job description, and will include questions on all must-have skills you specify. Here's a quick guide on how you can request a custom test. You can also customize a test by uploading your own questions.

Can I combine multiple skills into one test?

Yes, absolutely. Custom assessments are set up based on your job description, and will include questions on all must-have skills you specify. Here's a quick guide on how you can request a custom test.

What roles can I use the Natural Language Processing (NLP) Assessment Test for?

Here are few roles for which we recommend this test:

  • NLP Engineer
  • Machine Learning Engineer
  • Artificial Intelligence Researcher
  • Business Analyst
  • NLP Research Scientist
Can I see a sample test, or do you have a free trial?

Yes!

The free trial includes one sample technical test (Java/ JavaScript) and one sample aptitude test that you will find in your dashboard when you sign up. You can use it to review the quality of questions and the candidate experience of giving a test on Adaface.

You can preview any of the 500+ tests and see the sample questions to decide if it would be a good fit for your requirements.

How do I interpret test scores?

The primary thing to keep in mind is that an assessment is an elimination tool, not a selection tool. A skills assessment is optimized to help you eliminate candidates who are not technically qualified for the role, it is not optimized to help you find the best candidate for the role. So the ideal way to use an assessment is to decide a threshold score (typically 55%, we help you benchmark) and invite all candidates who score above the threshold for the next rounds of interview.

I'm a candidate. Can I try a practice test?

No. Unfortunately, we do not support practice tests at the moment. However, you can use our sample questions for practice.

customers across world
Join 1500+ companies in 80+ countries.
Try the most candidate friendly skills assessment tool today.
g2 badges
Ready to use the Adaface Natural Language Processing (NLP) Online Test?
Ready to use the Adaface Natural Language Processing (NLP) Online Test?
logo
40 min tests.
No trick questions.
Accurate shortlisting.
Terms Privacy Trust Guide
ada
Ada
● Online
Previous
Score: NA
Next
✖️